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BaCkground
Infectious diseases place an unacceptable 
and disproportionate social and economic 
burden on low-income countries. National 
disease control programmes have the diffi-
cult task of allocating limited budgets for 
interventions across regions of their coun-
tries, based on often disparate datasets 
of varying quality from a range of sources 
including clinics, hospitals, village health 
workers, the private sector and non-govern-
mental organisations (NGOs). Every stage 
of the data collection and analysis pipeline 
for surveillance systems may be affected by 
a lack of capacity as well as by biases and 
misaligned incentives for reporting and 
managing data. Addressing these issues 
will be essential for effective reduction in 
the burden of endemic infectious diseases 
globally as well as to preparing for emerging 
epidemic threats.

Meanwhile, academic researchers—often 
in high-income settings—are developing 
increasingly sophisticated methods to collect 
and analyse data to improve spatial estimates 
of disease burden using new Big Data sources, 
mobile-Health or m-Health approaches or 
mechanistic and statistical modelling tech-
niques. While these advances leap ahead, 
however, many remain most useful for esti-
mating global disease distribution,1 rather 
than for national control programme prior-
itisation. Translating these new techniques 
to inform policy in endemic settings remains 
challenging. The pronounced disconnect 
between health systems and academia may 
limit the utility of new approaches. The high 
burden of work placed on healthcare workers 

in low-income settings further limits their 
scope and time available for engagement with 
methodological developments.

Despite ongoing challenges to implemen-
tation, however, there are promising analyt-
ical approaches that can leverage even patchy 
and low-quality data and diverse new data 
streams that can be productively harnessed 
to strengthen strategies for resource alloca-
tion when integrated with existing surveil-
lance systems. We detail the data and 
analysis challenges faced by national disease 
control programmes, outline possible solu-
tions offered by analytical approaches and 
new data-streams and conclude by outlining 
barriers to implementation.

Summary box

 ► New innovations that could transform infectious 
disease surveillance and control, including the use 
of Big Data, mobile health approaches and cutting 
edge quantitative methods, offer hope for disrupting 
traditional health systems and improving health 
worldwide.

 ► Much has been made of their potential, but very 
few have been translated successfully into policy or 
scaled up to a population level.

 ► We argue that there is currently a lack of integration 
of new approaches, making them unsustainable or 
unrealistic for most national control programmes 
and that the gulf between academia and 
policy makers remains a major barrier to their 
implementation.

 ► We propose that these innovations must be 
designed with direct input from national control 
programmes and embedded within already existing 
health systems.
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CHallenges assoCiated witH infeCtious disease 
surveillanCe systems
Generally, epidemiological data about patients are 
reported by healthcare practitioners via passive surveil-
lance systems to a central database, which is used to 
determine trends over time in and map the geographic 
distribution of burden of disease in different regions as 
well as the extent and efficacy of interventions (active 
surveillance via sentinel sites may also inform these 
efforts). These regional data in turn serve as an impor-
tant basis for resource allocation decisions. Figure 1 
illustrates the flow of data and potential hurdles faced by 
national control programmes and the ways in which new 
approaches may be used in parallel to traditional systems.

Data quality is often perceived as a major barrier to 
using passive surveillance data to guide resource prioriti-
sation. Data may be delayed or simply missing from core 
settings and, even where available, is frequently under-re-
ported, potentially in spatially and temporally variable 
ways.2 For example, a problematic reporting pattern that 
emerges repeatedly is an apparent increase in disease 
incidence that is actually caused by increased surveil-
lance efforts and/or diagnostic capacity. Over-reporting 
is also a potential hazard when local regions are finan-
cially incentivised to exaggerate their needs. Further, 

since many local health centres lack diagnostic capa-
bilities, much of the large-scale data rely on syndromic 
surveillance (influenza-like-illness, diarrhoea, fever) with 
low specificity. Additionally, estimates of the catchment 
population of health facility or district may be flawed, 
since data may be based on a single census from up to 
a decade ago, thus potentially both out of date3 and a 
poor reflection of seasonal fluctuations in population 
numbers.2 Collection of more detailed, highly curated 
data at sentinel sites seems promising, but may add little 
to national decision-making because such high-quality 
sites are likely to be limited in their spatial scale. All these 
issues mean that where case numbers exist, policy makers 
may have little confidence in them.

leveraging fragile data using statistiCal and 
matHematiCal prinCiples
The first question is what can be done with existing 
infrastructure and data. With the right statistical or 
theoretical tools, even low-quality data can potentially 
be leveraged to help inform strategic deployment of 
control efforts. Thoughtful deployment of interpola-
tion or geostatistical tools can be used to create smooth 
maps of burden or intervention efforts across space, also 

Figure 1 Data flows through health systems (blue) and major challenges faced by control programmes (red). A subset of 
clinical cases, which often represent only a subset of total infections both asymptomatic and clinical, are first detected by 
local health workers, most typically in health facilities and hospitals. Local health workers are also responsible for following 
up individuals with chronic infections requiring multiple treatments over months or years. Some fraction of clinical cases are 
lab confirmed, depending on capacity, and reported to regional or district centres, which in turn report to national control 
programmes. Data are often aggregated before being reported centrally. NGOs and the private sector may also produce a 
significant amount of epidemiological data. National control programmes aggregate and analyse data to map the distribution 
of disease burden, intervention efficacy and so on. New direct mHealth approaches (eg, participatory surveillance) and 
passively collected data (eg, from mobile phones via Call Data Records (CDRs); and satellites) may be used directly by control 
programmes to map underlying risks and population distributions. At every level, capacity remains an enormous issue for 
routine surveillance, and training for new approaches will be challenging for most control programmes. At different levels 
of the health system, incentives for reporting accurately may be misaligned, and timeliness of reporting may be particularly 
problematic for emerging threats. NGOs, non-governmental  organisations.
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allowing extrapolation to unmeasured contexts.1 4 5 Auto-
correlation models are also powerful tools, building on 
surveillance data to guide predictions about outbreaks 
of dengue, for example.6 Moving from statistical to 
mechanistic approaches, even if incidence reporting is 
erratic, dynamical signatures of the infectious process 
might still be detectable if additional data on features of 
cases are available, such as age, geographic location and 
gender. Age is a powerful covariate for infectious disease 
dynamics, as age of infection is linked to the magnitude 
of transmission. High-transmission pathogens often 
have a low average age of infection, as they move quickly 
through immunologically naïve populations.7 Conversely, 
implementation of control efforts is likely to increase the 
average age of infection,8 so intervention efficacy may be 
measured using shifting age structure of cases.

Where data are consistent through time, but not space, 
basic principles from infectious disease dynamics open 
the way to estimating characteristics of pathogens. For 
example, the growth rate of an epidemic can be extracted 
from incidence, allowing estimates of the net reproduc-
tion number, or R0, which captures the degree to which 
an outbreak is expected to grow (R0 >1) or shrink (R0 <1) 
(eg, deployed during the recent Ebola outbreak despite 
variation in reporting rates).9 Allocation of resources 
towards ‘source’ populations, where R0>1 then becomes 
possible—although maps of the locations and densities of 
rural populations (ie, denominator challenges) are also 

necessary. Infectious disease models can allow character-
istics of the surveillance system, such as the magnitude of 
under-reporting, to be estimated where the susceptible 
population can be inferred (eg, via susceptible recon-
struction).10 Where only syndromic surveillance is avail-
able, it may be possible to correct for background rates of 
focal syndromes to pull out the dynamics associated with a 
particular infection. This strategy has been used for influ-
enza11 (influenza-like-illness data are frequently available 
but data on influenza are rare), enabling investigation 
of signatures of climate effects on the burden of infec-
tion,12 for example, which has potential to contribute to 
planning efforts. Alternatively, simulation tools based on 
known epidemiological parameters of particular patho-
gens can establish the degree to which the data are 
reliable and forecast outbreaks and emergence events 
and/or the impact of interventions like vaccination (eg, 
roll-out of cholera vaccination to contain an epidemic).13

Complementing existing epidemiologiCal information 
witH new data sourCes
While these analytical strategies can compensate for the 
limitations of different data quality issues, a range of 
promising new data streams are also available. Rapid tech-
nological advances make these increasingly affordable, 
offering additional or new data layers to include in epide-
miological analyses.1 14 15 We focus on three new data types 

Figure 2 Optimal use of new approaches depends on epidemiological context. Different phases of epidemiological 
containment and control lend themselves to different analytical approaches and data sources. Here, we have highlighted 
the spatial dimensions of this issue, with emergence and elimination phases exhibiting high spatial heterogeneity. In these 
cases, pronounced heterogeneity produces signals in data that can be leveraged to model the spread of infection between 
populations. For endemic infections where prevalence is distributed throughout the country and controlling disease burden 
is the primary purpose of interventions, the use of age profiles of exposure and other analytical approaches may be used to 
enhance or make use of patchy or poor quality data.
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that are tractable in the context of control programme 
capacity: geospatial data, passively collected mobile 
phone records and pathogen genomic data. Note that we 
do not discuss the many mHealth approaches to actively 
engaging with populations directly, for surveillance or 
for interventions like health education,16 but these also 
provide data that do not rely on traditional surveillance 
systems. In general, different needs dominate at different 
phases across an epidemiological spectrum from emer-
gence to elimination (figure 2), which will determine 
which data are useful and how they should be analysed.

Geospatial data are increasingly of high resolution and 
encompasses settlements and transport networks, indices 
of vegetation coverage, land use, land surface tempera-
ture and wind speed. These data can be combined with 
other geospatially referenced data such as meteorolog-
ical data from weather stations, population densities or 
road networks to generate comprehensive estimates of 
environmental variables or indicators like remoteness 
or urbanicity relevant to communicable disease trans-
mission. This can then be combined with point pattern 
data on vector presence via machine learning algorithms 
to determine features such as the likely range and local 
transmission intensity of vector borne infections like Zika 
virus.17

Mobile phone data—routinely collected by operators 
and providing information about the location and move-
ments of subscribers in real time—offer tremendous 
promise for control programmes to measure disease 
spread, if appropriately anonymised and aggregated to 
protect subscriber privacy.18 Indeed, the development of 
appropriate anonymisation and aggregation protocols 
remains an important priority for academics and public 
health practitioners and will require carefully balancing 
the ethical risks of reidentifying individuals with the 
benefits of predicting disease spread and identifying 
targets for intervention. Integration of this information 
into risk mapping by control programmes offers partic-
ular promise where disease incidence is heterogeneous 
in time and space and mobility drives both changing 
burden of infection and the type of intervention needed. 
For example, during an emerging epidemic (eg, Ebola), 
spatial containment of the disease and proactive surveil-
lance (in the correct locations) are essential, requiring 
specific spatial targets and estimates of how people will 
move the infection to new regions.19 At the other end 
of the spectrum, control programmes aiming for elimi-
nation (eg, malaria, measles) require accurate maps of 
remaining foci of transmission and an understanding of 
the relative importance of local versus imported cases of 
disease.18 These data can also be leveraged to address 
issues in estimation of the denominator or population at 
risk.3

Genome sequencing costs have declined strikingly in the 
last decades, making it increasingly feasible for control 
programmes to integrate pathogen sequencing and 
molecular epidemiology into their data collection and 
analysis strategies. Unlike mobile phone data, which 

offers an external view of mobility that can be used to 
model disease spread, analysis of pathogen genetic 
data provides complementary insights into transmis-
sion chains and pathogen gene flow between locations. 
During outbreaks, sequencing can provide insights into 
the place and time of the outbreak’s origin and the pace 
of its spatial spread.20 For elimination planning, pathogen 
sequencing can identify the regional or national origin 
of a particular isolate and estimate the rate of migration 
between populations where this information is difficult 
to measure by other means. For endemic pathogens 
like TB, where low incidence and relatively stable prev-
alence in many places makes analytical inferences and 
spatial data from mobile phones or satellites less trac-
table, genomics can provide key insights into the spread 
of drug resistance and the connectivity between different 
populations.

engaging Community HealtH workers and 
researCHers wHo ColleCt and analyse data is key
While our focus is on the potential of existing data 
despite perceived inadequacies and in use of novel data 
streams, it is important to note that country experience 
points to many low-cost adjustments to practice that 
could improve data availability. In multiple settings, there 
are important opportunities to share data across diseases, 
breaking down silos between disease surveillance and/
or control programmes. This effort would be enhanced 
by electronic rather than paper-based reporting systems, 
allowing standardised data collection, aggregation and 
sharing. Perhaps most importantly, however, effectively 
engaging community health workers and others who 
collect and report patient data will be key to strength-
ening surveillance. For example, in Cambodia, malaria 
case reporting was improved when healthcare workers 
received feedback about the incidence of malaria in 
their area using colour-coded stickers; the effective use of 
mobile phones and tablets for reporting cases improved 
when health workers could use them for personal use 
and where internet coverage was restricted, the flexible 
reporting using mobile phones via SMS and later smart-
phones greatly improved timeliness of data collection.

It will be essential to sustain resources for engaging 
with health workers involved in generating and reporting 
surveillance data and not to impose technological 
advances at the expense of motivating and retaining 
qualified, reliable workers who form the foundation of 
an effective health system. Barriers to implementing 
approaches that use novel types of data or new analytical 
tools are rooted in human capacity (figure 1) at every 
level within control programmes, from local healthcare 
centres up to the ministry of health. While a consider-
able strength of novel data-streams such as satellite or 
mobile phone data are that they bypass many of the levels 
of reporting where data may be lost and incentives are 
misaligned, the insights they provide will be limited for 
setting public health agendas if they are not integrated 
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with traditional reporting systems. For academics, one 
of the most important contributions in this regard will 
be providing training, so that public health officers 
have the technical capacity to understand the benefits 
of, and oversee the implementation of, new methods. 
Sustainable integrating of these approaches will require 
sustained commitment from Ministries of Health, donor 
agencies and academics.
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